Microprocessor 1/O

(Chapter 5)

Microprocessor 1/O

Data Communication,

Parallel 1/0

Serial communication

Serial interface and UART modems

/O devices,D/A,A/D interface, special I/O
devices.

Tx and Rx

 The UART has a transmission-engine, and
also a reception-engine, which are able to
operate simultaneously (i.e., “full-duplex”)

o Software controls the UART’s operations
by accessing several registers, using the
X86 processor’s ‘in’ and ‘out’ instructions

e Linux provides some convenient ‘macros’
that ‘hide’ the x86 machine-code detalls

PC-to-PC communications

student student
workstation workstation

()

KVM cable

KVM cable

rackmount rackmount
PC system null-modem’ serial cable PC system

H H ethernet cables

DCE and DTE

* Original purpose of the UART was for PCs
to communicate via the telephone network

* Telephones were for voice communication
(analog signals) whereas computers need
so exchange discrete data (digital signals)

e Special ‘communication equipment’ was
needed for doing the signal conversions
(I.e. a modulator/demodulator, or modem)

PC with a modem

Computer
terminal
modem
S
Q soee serial —
cable
L Data Data
phone Communications Terminal
wire : I
Equipment Equipment

(DCE) (DTE)

Serial data-transmission

The Transmitter Holding Register (8-bits)

Software outputs a byte
of data to the THR

0

0

0

0

0

The bits are immediately

copied into an internal
‘shift’-register

The bits are shifted out,
one-at-a-time, in sync

with a clock-pulse

0_

L, 1

L, 1

—>O_

—>O_

—>O_

—>O_

i

—— 1-0-1-1-0-0-0-0-1-0

The transmitter’s internal ‘shift’ register

clock

[data-bits [

stop start

clock-pulses
trigger bit-shifts

bit bit

Serial data reception

iInput voltage

clock-pulses trigger

voltage-sampling
and bit-shifts

at regular intervals

v

1-0-1-1-0-0-0-0-1-0
{ data-bits {

stop start
bit bit

clock

The receiver’s internal ‘shift’ register

—> 0 _|

L, 1

L, 1

L, 0

L, 0

L, 0

L, 0

1

Software can input
the received byte
from the RBR

0

1

1

0

0

0

0

1

The Receiver Buffer Register (8-bits)

Normal 9-wire serial cable

.1 Carrier Detect .1

6

o Data Set Ready 46
PS Rx data o

e Request To Send °
° Tx data °

o Clear To Send e
PS Data Terminal Ready

°
° . .
9 Ring Indicator 49

() Signal Ground ®
5 5

Signal functions

CD: Carrier Detect The modem asserts
this signal to indicate that it successfully
made Its connection to a remote device

RI: Ring Indicator The modem asserts
this signal to indicate that the phone is
ringing at the other end of its connection

DSR: Data Set Ready Modem to PC
DTR: Data Terminal Ready PC to Modem

Signal functions (continued)

* RTS: Request To Send PC is ready for
the modem to relay some received data

« CLS: Clear To Send Modem is ready for
the PC to begin transmitting some data

O-wire null-modem cable

CD e e CD
RxD RxD
TxD >< TxD
GND e < GND

DSR ::::::::><::::::::: DSR
DTR DTR
RTS >< RTS
CTS CTS

RI ® *RI

no modems

The 16550 UART registers

Base+0

Base+0
Base+0
Base+1
Base+2
Base+2
Base+3
Base+4
Base+5
Base+6

Base+7

Divisor Latch Register

Transmit Data Register

Received Data Register

Interrupt Enable Register

Interrupt Identification Register

FIFO Control Register

Line Control Register

Modem Control Register

Line Status Register

Modem Status Register

Scratch Pad Register

8-bits (Write-only)

8-bits (Read-only)

8-bits (Read/Write)

8-bits (Read-only)

8-bits (Write-only)

8-bits (Read/Write)

8-bits (Read/Write)

8-bits (Read-only)

8-bits (Read-only)

8-bits (Read/Write)

16-bits (R/W)

Rate of data-transfer

The standard UART clock-frequency for
PCs equals 1,843,200 cycles-per-second

Each data-bit consumes 16 clock-cycles

So the fastest serial bit-rate in PCs would
be 1843200/16 = 115200 bits-per-second

With one ‘start’ bit and one ‘stop’ bit, ten
bits are required for each ‘byte’ of data

Rate Is too fast for ‘teletype’ terminals

Divisor Latch

The ‘Divisor Latch’ may be used to slow
down the UART’s rate of data-transfer

Clock-frequency gets divided by the value
programmed Iin the ‘Divisor Latch’ register

Older terminals often were operated at a
‘baud rate’ of 300 bits-per-second (which
translates into 30 characters-per-second)

So Divisor-Latch was set to 0x0180

How timing works

|

Transmitter clock (bit-rate times 16)

UUTTUUrrnuuuiuuuersuuuiuuirrguuuiuu i

DATA |
OouT
start-bit data-bit O data-bit 1
) 24 clock-cycles 4 16 clock-cycles g) 16 clock-cycles
sample sample

Receiver clock (bit-rate times 16)

L receiver detects this high-to-low transition,
so it waits 24 clock-cycles,
then samples the data-line’s voltage
every 16 clock-cycles afterward

Programming Interface

The PC uses eight consecutive I/O-ports to access the UART’s registers

0x03F8 Ox03F9 Ox03FA O0x03FB Ox03FC 0s03FD Ox03FE OxO03FF
RxD/TxD | |ER IR/IFCR | LCR MCR LSR MSR SCR
interrupt line modem
enable status status
reqgister register register
: : line modem
receive buffer register and scratchpad
transmitter holding register control - control register
ansmitter hoicing registe register register egiste
(also Divisor Latch register)

interrupt identification register
and FIFO control register

Modem Control Register

6 5 4 3 2 1 0
LOOP
0 0 BACK OuUT2 | OUT1 | RTS DTR
Legend:

DTR = Data Terminal Ready (1=yes, 0=no)

RTS = Request To Send (1=yes, 0=no)

OUT1 = not used (except in loopback mode)
OUT2 = enables the UART to issue interrupts
LOOPBACK-mode (1=enabled, O=disabled)

Modem Status Register

7 6 5 4 3 2 1 o)
delta | delta | delta | delta
S R I S DCD RI DSR CTS
set if the corresponding bit
has changed since the last
time this register was read
Legend: [---- loopback-mode ----]

CTS = Clear To Send (1=yes, 0=n0)
DSR = Data Set Ready (1=yes, 0=no0)
RI = Ring Indicator (1=yes,0=n0)

[bit O in Modem Control]
[bit 1 in Modem Control]
[bit 2 in Modem Control]

DCD = Data Carrier Detected (1=yes,0=no) [bit 3 in Modem Control]

Line Status Register

7 6 5 4 3 2 1 0
Errorin [Transmitter| THR Break | Framing [Parity | Overrun Re[(;;\;ed
idl '
Rx FIFO idle empty Interrupt error error error Ready

A A A

A

A

A

These status-bits indicate errors in the received data

This status-bit
Indicates that the

data-transmission
has been completed

This status-bit indicates that

the Transmitter Holding Register
IS ready to accept a new data byte

This status-bit indicates that a new byte of data has arrived
(or, in FIFO-mode, that the receiver-FIFO has reached its threshold)

A

Line Control Register

7 6 5 4 3 2 1 0
Divisor set stick | SVen parity ATl word length
Latch . parity of stop :
break | parity enable : selection
access select bits
A A A A A OO _ 5 bItS
01 = 6 bits
10 =7 bits
11 = 8 bits
0 =1 stop bit
0 = normal 1 = 2 stop bits
1 ="pbreak’ 0 = no parity bits
1 = one parity bit

0 = not accessible

1 = assessible 1 = even parity

0 = ‘odd’ parity

Interrupt Enable Register

4 6 5 4 3 2 1 0
Modem Rx Line THR Received

0 0 0 0 Status Status is datais
change | change empty | available

A A

If enabled (by setting the bit to 1),

the UART will generate an interrupt:

(bit 3) whenever modem status changes
(bit 2) whenever a receive-error is detected

A

(bit 1) whenever the transmit-buffer is empty

A

(bit 0) whenever the receive-buffer is nonempty

Also, in FIFO mode, a ‘timeout’ interrupt will be generated if neither
FIFO has been ‘serviced’ for at least four character-clock times

FIFO Control Register

7 6) 4 3 2 1 0
DMA XMIT RCVR
R_CVR FIFO reserved | reserved Mode FIFO FIFO AR
trigger-level select reset reset | ENable
00 = 1 byte .
— NOTE: DMA is unsupporte
01=4 bytes for the UART on our systems
10 = 8 bytes
11 = 14 bytes

Writing 1 empties the FIFO, writing 0 has no effect

Writing O will disable the UART'’s FIFO-mode, writing 1 will enable FIFO-mode

Interrupt Identification Register

00 = FIFO-mode has not been enabled Blig?rst ptrlorltyt
11 = FIFO-mode is currently enabled . n e_rrup
still pending

highest
011 = receiver line-status
010 = received data ready
100 = character timeout
001 = Tx Holding Reg empty
000 = modem-status change
lowest

1 = No UART interrupts are pending
0 = At least one UART interrupt is pending

